
Computer Science

Reducing Network Depth in the Cascade-
Correlation Learning Architecture

Shumeet Baluja & Scott E. FahIman

October 17, 1994

CMU-CS-94-209

19941228 130 __
TC..

ELECTI"r
JAM1O 3'1995'

Carnegie o
Mellon"

A'A289352

Reducing Network Depth in the Cascade-
Correlation Learning Architecture

Shumeet Baluja & Scott E. FahIman

October 17, 1994

CMU-CS-94-209

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

The Cascade-Correlation learning algorithm constructs a multi-layer artificial neural network as it learns
to perform a given task. The resulting network's size and topology are chosen specifically for this task. In
the resulting "cascade" networks, each new hidden unit receives incoming connections from all input and
pre-existing hidden units. In effect, each new unit adds a new layer to the network. This allows Cascade-
Correlation to create complex feature detectors, but it typically results in a network that is deeper, in terms
of the longest path from input to output, than is necessary to solve the problem efficiently. In this paper we
investigate a simple variation of Cascade-Correlation that will build deep nets if necessary, but that is
biased toward minimizing network depth. We demonstrate empirically, across a range of problems, that
this simple technique can reduce network depth, often dramatically. However, we show that this tech-
nique does not, in general, reduce the total number of weights or improve the generalization ability of the
resulting networks.

Shumeet Baluja is supported by a National Science Foundation Fellowship. This research was supported
by the Department of the Navy, Office of Naval Research under Grant No. N00014-93-1-0806 and by the
National Science Foundation under grant IRI9214873. The conclusions presented in this paper are those of
the authors and not necessarily those of the U.S. government or the sponsoring agencies.

rTC To 4
.1.4

i - II II

it

Keywords

Artificial Neural Networks, Cascade-Correlation, Network Depth, Constructive Neural Network Learning
Algorithm

Page 3/11

1 INTRODUCTION

In 1990, the Cascade-Correlation learning algorithm (sometimes shortened to "Cascor") was introduced by
Scott E. Fahlman and Christian Lebiere [Fahlman and Lebiere, 1990]. Cascor offers two major advantages
over standard back-propagation networks: First, the user does not have to guess in advance the propet
size and topology for a network to fit the problem at hand. Cascor develops a good, though not necessarily
optimal, network topology in the course of learning each new problem. Second, Cascor's greedy learning
algorithm can be several orders of magnitude faster than standard backpropagation, which must engage
in a complex, dynamic, competitive process in order to sort out which hidden unit will do which job
within the network [Fa'hlnan, 19881.

Cascor begins with a minimal network, then automatically trains new hidden units one by one and adds
them to the active net. Each new hidden unit receives a connection from each of the network's original
inputs and also from each of the previously installed hidden units. Thus, the addition of each hidden unit
effectively creates a new layer in the network, lengthening the longest signal path from input to output by
one device and one layer of weights. One of the advantages of this method is that each new unit creates a
high-order feature detector, able to compute a more complex function than the units in earlier layers. How-
ever, the resulting networks may be much deeper than necessary for solving the problem efficiently.

It is well known that a network with a single layer of hidden units with sigmoid activation functions is suf-
ficient to approximate any continuous function [Hornik, Stinchcombe, White, 19891. However, the number
of units required in this single layer may be very large. For some problems, such as the "two spirals" prob-
lem addressed later in this paper, the number of hidden units and the time required for training can be-
greatly reduced by using more hidden layer;. Cascor handles such problems well, but since each hidden
unit occupies a layer of its own, the networks are almost always deeper than is either necessary or useful.

Is this excess depth a problem? Many people regard it as one. There have been a number of papers which
dismLss Cascor on the grounds that the networks it produces are too deep. See, for example, [Phatak &
Koren, 1994], in which the authors limit the network topology to a strictly layered form, with all the layers
limited to the same number of hidden umits, pre-determined by the user. Other alternative schemes pro-

pose constructive learning algorithms that use only a single layer of hidden units, or that impose some

other tight restriction on network depth. Such schemes work well when the problem fits into the limited
architecture that they support, but they either do poorly or fail, when the problem can benefit from a deep
net. Another often noted criticism of the Cascor algorithm is the extra time required to propagate a signal
through many excess layer.a in very deep networks. The growth of the hidden units' fan-in as the network
grows deeper has also been regarded as a drawback of the Cascor algorithm. Additionall, the increased
fan-in and depth of the network make it hard for humans to interpret the functions being performed, or
the features being detected, by units deep in the network. Although only some of these problems may be
pertinent to a given application of the algorithm, all have been cited as potential problems which need to
be addressed.

In thi6 paper we will show that if it is desired to reduce excess network depth, a simple modification of the

Cascor algorithm will suffice. The resulting algorithm still retains the ability to build deep nets when the

problem calls for them. In this paper, we will also investigate whether the shallower nets produced by this
method are better at generalizing to new cases that are similar but not identical to those hi the training set.

1.1 Introduction to Cascade-Correlation

The Cascade-Correlation network Is initialized with no hidden units. There is orn a direct conmection
from each input to each outlput tuit. These initial connections are trained as well as possible. Any single-

layer network learning algorithm could be used to train the output weights. In the simulatikms reported
here, the Quickprop algorithm is used [Fahlman, 198],

Page 4/11

After training ceases to yield significant Improvement, and if the error has not been reduced to a satisfac-
tory level, a single new hidden unit is trained (see below) and added to the active network. After the new
unit is added, its input weights are frozen, and all of the weights entering the output units are again
trained using Quickprop. This cycle is repeated until the error is satisfactorily reduced.

To train a new hidden unit, we begin with a "candidate uni'" that receives an incoming connection from
each of the network's original inputs and from each pre-existing hidden unit. During training, the candi-
date unit's output is unconnected, so it has no effect on the active network's outputs. The incoming con-
nections are initialized with small random weights. Holding the active network fixed, we cycle through
the set of training examples, adjusting the incoming weights so as to iteratively increase the magnitude of
S, a measure of the correlation between the candidate unit's output value and the residual output error
observed at the output units. The term we want to maximize can be expressed by equation 1, in which V is
the candidate unit's value, and E is the residual output error observed at output o. In a manner similar to
the derivation of backpropagation, the derivative aSIov with respect to each of the unit's incoming
weights is determined, and the weights are then modified (using Quickprop) so as to increase S.

S = (Vp - V) ((1)
• outputs (o) patterns(p)

Instead of training only a single hidden unit at a time, a pool of candidate units, each with a different set of
random initial weights, can be trained simultaneously. When all of the candidate units have ceased to
improve their S scores, the candidate unit with the best score is chosen for installation into the active net-
work; the others are discarded. This use of a candidate pool reduces the chance of installing a new, perma-
nent unit that has become stuck in a local minimum of the learning space, and that would contribute little
to the network's performance. It also makes it possible for a mixture of unit-types or units with different
input connectivity to compete for a place in the active network. On a parallel machine, the candidate units
can be trained in parallel, since there is a no interaction between these units except to select a winner [Fahl-
man & Lebiere, 19901.

2 LEARNING WITH SIBLING AND DESCENDANT UNITS

A simple modification of Cascor is effective in reducing the depth of the resulting networks. We split the
pool of candidate units into two groups. One group, the descendant units, operates just as described earlier.
each candidate unit receives inputs from all pre-existing hidden units, and deepens the active net by one
layer when it is installed. The other group, the sibling units, receive inputs from earlier layers of the net, but
not from those units that are currently in the deepest layer of the net. When a sibling unit is added to the
active net, it becomes part of the current deepest layer - a sibling of the deepest units created so far -but
it does not begin a new, deeper layer in the network. We call this revised algorithm "Sibling/Descendant
Cascade-Correlation" or SDCC.

This use of separate sibling and descendant pools in Cascor was first investigated by Christian Lebiere and
Scott Fahlman. Lebiere did observe a reduction in network depth, but the work was abandoned after a few
experiments and was never published. More recently, this architecture and several other Cascor variants
were studied by Waugh and Adams (19941, but using only the two-spirals problem and a very similar
"double helix" problem. Their results are consistent with ours, but it is hard to draw any general conclu-
sions from so limited a set of benchmark problems.

During candidate training, the sibling and descendant units compete with one another The one with the
best S score is chosen for installation in the active network. Thus, the network will only be deepened in
cases where a descendant unit is able to do a better job of matching the residual error than any of the sib-
ling units. It may seem surprising that a sibling unit ever wins the contest, since they share all the inputs of

Page 5/11

the sibling units, plus one or more additional inputs. In principle, these additional inputs should only help
the descendant units; if they do not, the learning algorithm should set these weights to zero. However, in
practice, the sibling units, with fewer inputs, are able to converge more quickly, and they often maintain a
slight edge in the S score unless the extra inputs give the descendant units some real advantage.

If we want to create a stronger bias in favor of shallow networks, we can penalize the descendant units by
multiplying their S scores by a factor X, 5 1.0. For example, if X = 0.5, a descendant unit will only be selected
if its S score is twice that of the best sibling unit. In the experiments reported below, we test six values of).
for each problem.

This modification in the algorithm leads to large differences in the network architecture. For example, con-
sider the cross recognition problem (described in detail in the next section). In Figure 1, we illustrate the
network architecture developed using standard Cascor and two typical runs of SDCC with X - 0.9. The
depth of the network is reduced from 7 hidden layers to one or two.

output 0 0 0
0

hidden A7 000 0000000

O 0000
input 00 -4-49-- 00 00 -4-49-u"- 00 00 -*-49-*- 00

Figure 1: Network Architectures created by standard Cascade-Correlation (left) and by
Sibling/Descendant Cascade-Correlation (middle and right), with X = 0.9. The
architecture on the left has 7 hidden layers, the one in the middle 2, the one on the right,
1. Hidden units are shown shaded. Each hidden unit has an input connection from every
unit in the layers below its own.

3 EMPIRICAL ANALYSIS

To analyze the benefit of using siblings rather than descendants alone, a large number of test were per-
formed on benchmark problems. These tests can be broadly divided into two groups. The first set of tests
are to determine the new algorithm's ability to generalize, while the second are to determine the new
architecture's ability to memorize. Each group of tests is done with six settings for the X parameter for the
descendant units. Each of the results reported here is the average of at least 25 training sessions per X set-
ting.

All of the parameters used in this experiment are set to the default values of the Cascade-Correlation sim-
ulator available through Carnegie Mellon University's Neurai Network Archives. Unless otherwise noted,
there were 8 candidate units in the candidate pool. In the SDCC algorithms four of the candidate units
were trained as descendents, and four were trained as siblings. In the original version of Cascade-Correla-
tion, all of the eights candidate units were descendent units. All of the candidate units were sigmoid units.
with output values in the range of ±0.5. No weight decay was used. As suggested in [Fahlman, 1988), no
weight was allowed to grow more than by a factor of 2 from the previous time step (Mu parameter). Also
as suggested in IFahlman, 19881, an offset of 0.1 is added to the sigmoid prime values of the output units to
eliminate the flat spot where The derivative of the sigmoid function approaches zero (SigPrimeOftset
Parameter). Training, in all of the experiments, is continued until aU of the training examples are correctly
classified.

Page 6/11

3.1 Generalization Tasks

Five classes of problems were empirically examined. The suite of test problems included the parity prob-
lems, classification of the Vowels database, classification of the Sonar database, a checkerboard probkm,
and a cross recognition problem.

3.1.1. The Parity Benchmark

Three versions of the parity problem were attempted to ascertain generalization ability. The problems
attempted here included 10 bit parity problems with 512 training points and 512 testing points, the 10 bit
parity with 256 training points and 768 testing points, and the 12 bit parity with 1024 training points and
3096 testing points. The results are shown below, in Table 1. In all of the tables, percent correct refers to the
performance on the test set -

Table 1: The Parity Benchmark

Table Standard Sibling/Descendant Cascade-Correlation
TASK Interpretation Cascor X = 1.0 X = 0.95 X = 0.9 X = 0.8 X = 0.5 X =02

PARITY 10 Percent Correct 97.6 97.7 97.7 97.4 97.0 95.0 94.2
512 Train Hidden Units 5.8 5.8 6.1 6.4 7.0 8.6 8.9
512 Test Hidden Layers 5.8 3.8 3.2 3.1 2.7 1.16 1.0

Connections 94.5 92.4 97.7 100.3 107.3 115.9 117.6

PARITY 10 Percent Correct 86.4 85.9 85.4 85.1 81.2 75.4 72.5
256 Train Hidden Units 6.5 6.7 6.6 6.8 7.4 8.7 9.5
768 Test Hidden Layers 6.5 4.2 3.5 3.0 2.4 1.1 1.0

Connections 108.4 107.8 105.1 106.1 111.3 116.2 124.5

PARITY 12 Percent Correct 96.5 97.5 97.4 98.0 97.7 94.2 92.3
1024 Train Hidden Units 8.5 8.2 8.4 7.6 10.1 13.5 15.6
3096 Test Hidden Layers 8.5 5.1 4.8 3.8 3.2 1.5 1.0

Connections 170.5 154.0 158.1 160.1 174.2 211.5 234.0

3.1.2. The Vowel and Sonar Classification Problems

The vowel classification task data is taken from [Robinson, 1989]. The task is to classify eleven steady state
vowels of British English using a training set of lpc derived log area ratios. The input size is 10 units, the
output is represented as 11 binary units of which only one is turned on in a given example. The sonar sig-
nal classification task is to discriminate between sonar signals which bounce off of a metal cylinder and
those that bounce from roughly cylindrical rock [Gorman and Sejnowski, 1988]. The number of inputs was
60, a single binary output was used. The data for both of these experiments were obtained from the Carn-
egie Mellon University's Neural Network Bench Archives. The Sonar classification task was also
attempted with a large weight-decay (0.03) applied during candidate-unit training, which improves gener-
alization performance in this case. The results for all of these experiments are shown in Table 2.

The percentage of correct values for the vowel set are computed in a non-standard manner. The percent
correct refers to the sum of the number of correct outputs for each sample in the testing set, divided by the
number of total outputs in the testing set.

Page 7/11

Table 2: The Vowel and Sonar Classification Benchmark

TASK Table Standard Sibling/Descendant Cascade-Correlation
Interpretation Cascor X= 1.0 X = 0.95 X=0.9 X = 0.8 ,0.5 . 0.2

VOWELS Percent Correct~ 89.6 89.7 89.4 89.7 89.5 89.7 89.9
Hidden Units 15.7 15.4 15.7 16.4 17.2 18.5 18.4
Hidden Layers 15.7 8.8 6.8 5.2 2.7 1.0 1.0
Connections 581.8 561.9 566.1 579.9 580.0 527.4 525.6

SONAR Percent Correct 75.5 76.0 76.8 75.8 75.6 76.2 76.3
Hidden Units 1.4 1.0 1.0 1.0 1.0 1.0 1.1
Hidden Layers 1.4 1.0 1.0 1.0 1.0 1.0 1.0
Connections 146.3 125.5 123.0 12i.5 125.5 123.0 128.0

SONAR Percent Correct 85.6 84.6 85.0 85.3 85.5 85.2 85.5
decay= Hidden Units 6.6 6.5 6.8 6.8 6.7 7.3 11.2
0.03 Hidden Layers 6.6 5.8 6.0 5.3 4.8 3.2 1.0

Connections 488.9 479.9 501.6 503.1 494.3 540.0 752.9

3.1.3. The Checkerboard Problem

This problem is a variant of the traditional exclusive-or (XOR) problem. In this problem, there are two con-
tinuous valued inputs, representing the (x,y) coordinates in a 2D plane, and one binary output. The task is
to determine whether the point designated by the inputs would fall on a black or red square of a standard
checkerboard. Three versions of this problem were studied: the first had 500 training examples and 2500
testing points, the second had 250 training examples and 2750 testing points, and the third had 125 train-
ing examples and 2875 testing points. The training and test sets for the first trial are shown below, in Figure
2. The results of the experiments are shown in Table 3.

I . .• % ,.. ' .. * • . * ,~ '

-- ; + ,-+-2..--.-,+.i

W..* . ' * . . . , • . .

Figure 2: Training (left) and Testing (right) data for the checkerboard problem, version 1. Crosses
represent positive examples, dia-monds represent negative examples.

Page 8/11

Table 3: The Checkerboard Problem

TASK Table Standard Sibling/Descendant Cascade-Correlation
I Interpretation Cascor [X = 1.0 X = 0.93 X = 0.9 X = 0.8 X - 0.5 X =0.2

CHECKER- Percent Correct 88.4 88.4 88.6 88.5 89.0 90.0 91.6
BOARD Hidden Units 24.1 24.7 24.7 24.5 25.0 29.2 34.3
Train S0 Hidden Layers 24.1 16.8 14.1 12.2 8.9 4.0 2.4
Test 2500 Connections 382.0 387.0 382.8 370.6 367.7 413.9 421.8

CHECKER- Percent Correct 81.3 80.7 81.7 81.0 82.0 82.6 84.0
BOARD Hidden Units 17.3 17.5 17.8 18.3 18.2 20.5 24.1
Train 250 Hidden Layers 17.3 12.3 10.5 8.6 6.6 2.9 2.0
Test 2750 Connections 215.1 212.6 215.7 221.1 208.4 210.2 178.2

CHECKER- Percent Correct 75.4 74.6 74.6 74.8 74.2 75.3 76.2
BOARD Hidden Units 12.8 13.2 13.6 13.5 14.0 15.6 19.2
Train 125 Hidden Layers 12.8 8.8 7.9 6.5 5.3 2.4 2.0
Test 2875 Connections 131.4 132.0 135.7 130.4 134.4 125.6 121.2

3.1.4. Cross Recognition
Two cross recognition problems were attempted, the first had 36 inputs, the second had 49 inputs. Each
had 1 output. All of the inputs and output are binary. For visualization, the inputs are arranged as a two
dimensional 6x6 and 7x7 grid for the two problems, respectively. The task is to determine if exactly one
cross shaped pattern of activation is present within the input grid. Each input presentation has the same
number of inputs turned on. The training set was designed as follows: there can exists 0, 1, or 2 crosses in
the input grid. The center of each of the crosses, if any are present in the example, occur somewhere on the
upper-left to bottom-right diagonal, as shown in Figure 3. A positive example is one in which there is only
I cross. Positive noise was added to each input example. If this noise caused the existence of a new cross,
the example was deleted, and a new example created. A sample of the classifications is shown below, in
Figure 3. The performance for both of the problems is given in Table 4. For both of the problems, 1000
examples were used for training, and 1500 for testing.

- - - . .- - - +

- -. - ,

-. - 4 - -. -. - - - - - - -

- -- - - - -. - - - - - -.... --
-+4 - 4.

Figure 3: Three sample inputs for the cross recognition problem. Only the second examplc should
be classified as positive, as it contains exactly one cross. Samples are taken from the "7x
training set.

Page 9/11

Table 4: The Cross Recognition Problem

Table Standard Sibling/Descendant Cascade-Correlation
TASK Interpretation Cascor - -0.95 = 0.9 = 0.8 X = 0.5 =0.2

CROSS Percent Correct 90.9 90.7 91.3 91.1 90.6 90.2 904
(6x6) Hidden Units 5.4 5.4 5.3 5.7 5.7 5.8 5.9
1000 Train Hidden Layers 5.4 3.6 2.2 1.8 1.0 1.0 1.0
1500 Test Connections 252.5 251.5 243.1 257.2 254.4 258.9 260.4

CROSS Percent Correct 83.4 82.3 82.3 82.2 82.0 81.6 82.2
(70) Hidden Units 6.2 6.2 6.5 6.5 6.7 6.7 6.8
1000 Train Hidden Layers 6.2 3.7 2.4 1.6 1.2 1.0 1.0
1500 Test Connections 384.7 376.6 392.2 384.6 392.2 392.7 396.8

3.2 Memorization Tasks

To test the ability of the revised Cascade-Correlation to memorize training sets, three problems were stud-

ied. The first is the two spirals problem. The task is as follows: given two concentric spirals, determine to
which spiral a given point belongs. A version of this problem was also attempted with four spirals with a

single output node. The desired output was one of four values which were evenly spaced in the region of -
0.5 to +0.5. The training points for the two and four spirals problems are shown in Figure 4. The last prob-

lem in this section is the 10 parity problem, with all 1024 points used for training. The results are shown in

Table 5. In the 0.2 column, the row marked with N/A indicates that with this setting for X, the revised algo-

rithm was unable to find a solution with the addition of 100 hidden units in all but one run.

' , - T -- ' ' ., \ , a---

tI ITi

,k . 7. ..' ,

"F' i r 4: Trainin pont for th Two Spr l ., (left)..,dFo..,S,.ra .-(igtpr.,lem.,

., 9]... I-It,tl.....
, .. ,...../., .~ ' ... "4 •

,f -,,,:; --- :-vy- . :" ' " "" "

ige4:Training points for the Two Spiral (left) and Four Spiral (right) problems,

Page 10/11

Table 5: Memorization Tasks
Table Standard Sibling/Descendant Cascade-Correlation

Interpretation Cascor X=1.0 X = 0.95 X = 0.9 X= 0.8 X = 0.5 X 0.2

TWO Hidden Units 13.4 14.0 14.2 13.9 14.6 17,6 38.5
Spiral Hidden Layers 13.4 11.0 10.0 8.8 7.3 4.2 2.0

Connections 128 133 133 128 134 170 409

Four Hidden Units 39.5 39.2 43.3 39.9 40.9 52.3 N/A
Spiral Hidden Layers 39.5 28.2 23.8 21.2 14.2 5.6

Connections 891.6 864.8 904.2 875.4 882.1 1211.2

PARITY 10 Hidden Units 6.2 6.7 7.0 6.5 7.5 10.2 10.6
(1024 Hidden Layers 6.2 4.8 3.2 2.6 2.2 1.2 1.0
examples) Connections 102.6 108.3 109.3 98.9 113.0 134.2 138.7

4 CONCLUSIONS AND FUTURE RESEARCH

These experiments show that the Sibling/Descendant variation of Cascade-Correlation is able to very sub-
stantially reduce the number of layers in the network, as compared to the standard Cascade-Correlation
algorithm. Applying a relatively small penalty to units which create a new layer (X - 0.8) reduces the net-
work depth by a factor of 2-5 without a large impact on the network's ability to generalize. Using a larger
penalty factor (X = 0.2) reduces the depth still more, though sometimes this causes a modest reduction in
the generalization score. However, in some of the more difficult generalization problems, the use of X= 0.2
may cause the number of hidden units to explode or may prevent the network from converging altogether.

Despite the reduction in network depth and fan-in, we observed no consistent reduction in the total num-
ber of free parameters (trainable weights) in the network, and often an increase for very small values of X.
It appears that any reduction in connections due to the use of sibling units is balanced by a corresponding
increase in the total number of hidden units. Similarly, we observed no overall increase in the quality of
generalization due to the use of the SDCC variant.

As noted in the introduction, minimizing network depth may be important in applications in which for-
ward propagation time of the trained network is crucial, or in which interpretability of the function of the
hidden units is desired. SDCC can be a simple and effective method for automatically building anappro-
priate network topology of modest depth.

Possible extensions of this work include the automatic choice of the X parameter and the investigation of
more complicated techniques that would add units to earlier layers as well as the deepest current layer.

5 ACKNOWLEDGEMENTS

Thanks are due to Geoffrey Gordon and Dean Pomerleau for their discussions altout the Contents ,f k,,
paper and the Cascade-Correlation learning algorithm.

Page 11/11

6 REFERENCES

Fahiman, S. E. (1988) "Faster-Learning Variations on Back-Propagation: An Empirical Study" in Proceed-
ings, 1988 Connectionist Models Summer School, D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski (eds.), Mor-
gan Kaufman Publishers, Los Altos CA, pp. 38-51.

Fahlman, S. E. and Lebiere, C. (1990) "The Cascade-Correlation Learning Architecture", in Advances in Neu-
ral hfornation Processing Systems 2, D. S. Touretzky (ed.), Morgan Kau fmann Publishers, Los Altos CA, pp.
524-532.

Gorman, R. r. and Sejnowski, T. J. (1988) "Analysis of Hidden Units in a Layered Network Trained t, C.a,-
sify Sonar Targets" in Neural Networks, Vol. 1. p 75-89.

Hertz, J., Krogh, A, & Palmer, G. (1993) Introduction to the Theory of Neural Computation, Addison-Wesley
Publishing Company.

Hornik, K., Stinchcombe, M., and White, H. (1989) "Multilayer Feedforward Networks Are Universal
Approximators", in Neural Networks 2, 359-336.

Phatak, D. S. and Koren, T. (1994) "Connectivity and Performance Tradeoffs in the Cascade Correlation
Learning Architecture" in IEEE Transactions on Neural Neiworks, Vol. 5, No. 6, November 1994, pages 930 -
935.

Robinson, A. J. (1989) Dynamic Error Propagation Networks, Ph.D. Thesis, Cambridge University Engineer-
ing Department.

Waugh, S. and Adams, A. (1994) "Connection Strategies in Cascade-Correlation" in Proceedings: The Fifth
Australian Conference on Neural Networks, Brisbane, pp. 1-4.

